发布网友 发布时间:2024-12-22 13:25
共1个回答
热心网友 时间:1分钟前
(1)∵an=n2+1,
∴an+an+2-2an+1=n2+1+(n+2)2+1-2(n+1)2-2
=n2+n2+4n+4-2(n2+2n+1)
=2>0,
∴an+an+22>an+1,
∴(1)不属于集合W;
(2)∵an=2n+92n+11,
∴an+an+2-2an+1=2n+92n+11+2(n+2)+92(n+2)+11-2×2(n+1)+92(n+1)+11
=1-22n+11+1-22n+15-2+42n+13
=42n+13-22n+11-22n+15<0,
∴①an+an+22<an+1成立.
an=2n+92n+11=1-22n+11<1,
满足集合W的两个条件,从而可知(2)属于集合W;
(3)∵an=2+4n,
∴an+an+2-2an+1=2+4n+2+4n+2-4-8n+1
=4n+4n+2?8n+1>0,
∴an+an+22>an+1,
∴(3)不属于集合W;
(4)由an=1-12n,得an+an+2-2an+1≤0
所以数列{an}满足①an+an+22<an+1;
当n趋向无穷大时,an=1-12n趋近于1,故an<1,
满足集合W的两个条件,从而可知(4)属于集合W
故(2)(4)正确,
故选D.