发布网友 发布时间:2022-03-27 06:49
共3个回答
热心网友 时间:2022-03-27 08:18
主要学习一些Java语言的概念,如字符、流程控制、面向对象、进程线程、枚举反射等,学习MySQL数据库的安装卸载及相关操作,学习JDBC的实现原理以及Linux基础知识,是大数据刚入门阶段。
主要讲解CAP理论、数据分布方式、一致性、2PC和3PC、大数据集成架构。涉及的知识点有Consistency一致性、Availability可用性、Partition
tolerance分区容忍性、数据量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。
主要讲解协调服务ZK(1T)、数据存储hdfs(2T)、数据存储alluxio(1T)、数据采集flume、数据采集logstash、数据同步Sqoop(0.5T)、数据同步datax(0.5T)、数据同步mysql-binlog(1T)、计算模型MR与DAG(1T)、hive(5T)、Impala(1T)、任务调度Azkaban、任务调度airflow等。
主要讲解数仓仓库的历史背景、离线数仓项目-伴我汽车(5T)架构技术解析、*数据模型处理kylin(3.5T)部署安装、离线数仓项目-伴我汽车升级后加入kylin进行*分析等;
主要讲解计算引擎、scala语言、spark、数据存储hbase、redis、ku,并通过某p2p平台项目实现spark多数据源读写。
主要讲解数据通道Kafka、实时数仓druid、流式数据处理flink、SparkStreaming,并通过讲解某交通大数让你可以将知识点融会贯通。
主要讲解elasticsearch,包括全文搜索技术、ES安装操作、index、创建索引、增删改查、索引、映射、过滤等。
主要讲解数据标准、数据分类、数据建模、图存储与查询、元数据、血缘与数据质量、Hive Hook、Spark Listener等。
主要讲解Superset、Graphna两大技术,包括基本简介、安装、数据源创建、表操作以及数据探索分析。
主要讲解机器学习中的数学体系、Spark Mlib机器学习算法库、Python scikit-learn机器学习算法库、机器学习结合大数据项目。
热心网友 时间:2022-03-27 09:36
作为一名零基础学习者,请不要将大数据开发看做一门与Java、python等相似的IT语言,大数据更像是一门技术,其所包含的内容相对比较多。在正式开始学习之前,可以买一些大数据相关书籍或者找一些网上的学习资料,先建立对行业以及对大数据相关职位的了解。
比如,大数据分为哪些发展方向,不同的发展方向对应哪些发展职位,各个职位的发展所要求的核心技能点是什么,企业对于大数据人才的需求是什么样的,了解清楚了这些,才能真正考虑清楚,学什么怎么学。
以大数据开发来说,其中涉及到的主要是大数据应用开发,要求一定的编程能力,在学习阶段,主要需要学习掌握大数据技术框架,包括hadoop、hive、oozie、flume、hbase、kafka、scala、spark等等……
以大数据分析来说,有主攻业务运营方面的数据分析师,也有主攻机器学习、深度学习等的数据挖掘师,具体到其中的各个职位,更是有着更加具体的技能要求,那么在学习阶段就要先做好相关的准备了。
关于入门大数据需要学习什么内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
热心网友 时间:2022-03-27 11:11
作为一名零基础学习者,请不要将大数据开发看做一门与Java、python等相似的IT语言,大数据更像是一门技术,其所包含的内容相对比较多。在正式开始学习之前,可以买一些大数据相关书籍或者找一些网上的学习资料,先建立对行业以及对大数据相关职位的了解。
比如,大数据分为哪些发展方向,不同的发展方向对应哪些发展职位,各个职位的发展所要求的核心技能点是什么,企业对于大数据人才的需求是什么样的,了解清楚了这些,才能真正考虑清楚,学什么怎么学。
以大数据开发来说,其中涉及到的主要是大数据应用开发,要求一定的编程能力,在学习阶段,主要需要学习掌握大数据技术框架,包括hadoop、hive、oozie、flume、hbase、kafka、scala、spark等等……
以大数据分析来说,有主攻业务运营方面的数据分析师,也有主攻机器学习、深度学习等的数据挖掘师,具体到其中的各个职位,更是有着更加具体的技能要求,那么在学习阶段就要先做好相关的准备了。