首页 热点专区 义务教育 高等教育 出国留学 考研考公

距离判别与贝叶斯判别的区别是什么?

发布网友 发布时间:2022-04-24 09:04

我来回答

2个回答

热心网友 时间:2022-06-18 08:52

如下:

贝叶斯判别的准则是使由误判带来的平均损失达到最小。距离判别采用的是马氏距离,马氏距离反映了分散程度,判别时计算样品到总体的马氏距离,把样品归类到马氏距离最小的类别中。

对于协方差矩阵相等的若干个正态总体,两者的不同之处在于临界值的选取;若是先验概率和损失函数相同的两个同协方差矩阵的总体,则贝叶斯和距离判别是相同的。

三大类主流的判别分析算法,分别为费希尔(Fisher)判别、贝叶斯(Bayes)判别和距离判别。

具体的,在费希尔判别中我们将主要讨论线性判别分析(Linear Discriminant Analysis,简称LDA)及其原理一般化后的衍生算法,即二次判别分析(Quadratic Discriminant Analysis,简称QDA)。

而在贝叶斯判别中将介绍朴素贝叶斯分类(Naive Bayesian Classification)算法;距离判别我们将介绍使用最为广泛的K最近邻(k-Nearest Neighbor,简称kNN)及有权重的K最近邻( Weighted k-Nearest Neighbor)算法。

1、费希尔判别

费希尔判别的基本思想就是“投影”,即将高维空间的点向低维空间投影,从而简化问题进行处理。

投影方法之所以有效,是因为在原坐标系下,空间中的点可能很难被划分开,如下图中,当类别Ⅰ和类别Ⅱ中的样本点都投影至图中的“原坐标轴”后,出现了部分样本点的“影子”重合的情况,这样就无法将分属于这两个类别的样本点区别开来。

而如果使用如图“投影轴”进行投影,所得到的“影子”就可以被“类别划分线”明显地区分开来,也就是得到了我们想要的判别结果。

我们可以发现,费希尔判别最重要的就是选择出适当的投影轴,对该投影轴方向上的要求是:保证投影后,使每一类之内的投影值所形成的类内离差尽可能小,而不同类之间的投影值所形成的类间离差尽可能大,即在该空间中有最佳的可分离性,以此获得较高的判别效果。

对于线性判别,一般来说,可以先将样本点投影到一维空间,即直线上,若效果不明显,则可以考虑增加一个维度,即投影至二维空间中,依次类推。而二次判别与线性判别的区别就在于投影面的形状不同,二次判别使用若干二次曲面,而非直线或平面来将样本划分至相应的类别中。

相比较来说,二次判别的适用面比线性判别函数要广。这是因为,在实际的模式识别问题中,各类别样本在特征空间中的分布往往比较复杂,因此往往无法用线性分类的方式得到令人满意的效果。

这就必须使用非线性的分类方法,而二次判别函数就是一种常用的非线性判别函数,尤其是类域的形状接近二次超曲面体时效果更优。

2、贝叶斯判别

朴素贝叶斯的算法思路简单且容易理解。

理论上来说,它就是根据已知的先验概率 P(A|B),利用贝叶斯公式求后验概率P(B|A),即该样本属于某一类的概率,然后选择具有最大后验概率的类作为该样本所属的类。

通俗地说,就是对于给出的待分类样本,求出在此样本出现条件下各个类别出现的概率,哪个最大,就认为此样本属于哪个类别。

朴素贝叶斯的算法原理虽然“朴素”,但用起来却很有效,其优势在于不怕噪声和无关变量。而明显的不足之处则在于,它假设各特征属性之间是无关的。

当这个条件成立时,朴素贝叶斯的判别正确率很高,但不幸的是,在现实中各个特征属性间往往并非,而是具有较强相关性的,这样就*了朴素贝叶斯分类的能力。

3、距离判别

距离判别的基本思想,就是根据待判定样本与已知类别样本之间的距离远近做出判别。具体的,即根据已知类别样本信息建立距离判别函数式,再将各待判定样本的属性数据逐一代入计算,得到距离值,根据距离值将样本判入距离值最小的类别的样本簇。

K最近邻算法则是距离判别中使用最为广泛的,即如果一个样本在特征空间中的K个最相似/最近邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。

K最近邻方法在进行判别时,由于其主要依靠周围有限邻近样本的信息,而不是靠判别类域的方法来确定所属类别,因此对于类域的交叉或重叠较多的待分样本集来说,该方法较其他方法要更为适合。

热心网友 时间:2022-06-18 08:52

贝叶斯判别的准则是使由误判带来的平均损失达到最小。距离判别采用的是马氏距离,马氏距离反映了分散程度,判别时计算样品到总体的马氏距离,把样品归类到马氏距离最小的类别中。

对于协方差矩阵相等的若干个正态总体,两者的不同之处在于临界值的选取;若是先验概率和损失函数相同的两个同协方差矩阵的总体,则贝叶斯和距离判别是相同的。





距离判别分析方法是判别样品所属类别的一应用性很强的多因素决策方法,根据已掌握的、历史上每个类别的若干样本数据信息,总结出客观事物分类的规律性,建立判别准则,当遇到新的样本点,只需根据总结得出的判别公式和判别准则,就能判别该样本点所属的类别。

距离判别分析的基本思想是:样本和哪个总体的距离最近,就判它属于哪个总体。

贝叶斯判别是根据最小风险代价判决或最大似然比判决,是根据贝叶斯准则进行判别分析的一种多元统计分析法。

贝叶斯判别法的基本思想是:设有两个总体,它们的先验概率分别为q1、q2,各总体的密度函数为f1(x)、f2(x),在观测到一个样本x的情况下,可用贝叶斯公式计算它来自第k个总体的后验概率。



声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com