首页 热点资讯 义务教育 高等教育 出国留学 考研考公

导数是复合函数,如何求原函数

发布网友 发布时间:2022-04-24 17:43

我来回答

3个回答

热心网友 时间:2023-10-27 16:08

我猜你问的是这两个函数的原函数?

lnx/x = (1/x)*lnx, 原函数是((lnx)^2)/2 +C。这个用第一换元积分可以做。

设x=2t,则有cosx=cos(2t)=1-sin(t))^2,即1-cosx=2(sin(t))^2。
因此你的根号下1-cosx即为|(2^(1/2))*sint|,其原函数为(2^(1/2))*cost+C=(2^(1/2))*cos(x/2) +C, 视t的取值范围前面要加正负号。 这个是用第二换元积分。

热心网友 时间:2023-10-27 16:09

就是复合函数求导
第一个等于
[(1/X)*X-lnX]/X的平方
第二个=-(1/2)sinX/根号下(1-cosX)

热心网友 时间:2023-10-27 16:09

举例说明:
设有复合函数:
u(x)
=
u[v(x)]
(1)
其中:
u(v)
=
v^2
(2)
v(x)
=
e^x
(3)
实际上
u(x)
=
e^(2x)
(4)
复合函数求导:(x)/dx
=
(/dv)(dv/dx)
=
(2v)(e^x)
=
(2e^x)(e^x)
即:
(x)/dx
=
2e^(2x)
(5)
那么已知复合函数的导数u'(x)
,可以通过
对(5)式积分的方法求出它的原函数u(x),只是多出一个积分常数c:
u(x)
=

2e^(2x)dx
=

e^(2x)d(2x)
=
e^(2x)
+
c
=
(e^x)^2
+c
//:
采用变量替换:v(x)=e^x
u(v)=v^2,回代
=
u[v(x)]+c
(1)
=
e^(2x)+c
(4)
(是这个意思吗?)

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com