发布网友 发布时间:2022-04-25 10:48
共1个回答
热心网友 时间:2022-04-08 12:40
摘要文档聚类主要是依据著名的聚类假设:同类的文档相似度较大,而不同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程,以及不需要预先对文档手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,已经成为对文本信息进行有效地组织、摘要和导航的重要手段,为越来越多的研究人员所关注。咨询记录 · 回答于2021-09-23关键词,文本聚类+,自动摘要+,文本情感的区别文档聚类主要是依据著名的聚类假设:同类的文档相似度较大,而不同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程,以及不需要预先对文档手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,已经成为对文本信息进行有效地组织、摘要和导航的重要手段,为越来越多的研究人员所关注。文本自动摘要任务作为NLP领域中一个富有挑战性的任务,同时也是很多研究团队关注的问题。而在工业界,文本摘要任务的应用也非常广泛,除了直接提供文本摘要结果供用户阅读外,在很多其他下游任务中都充当着重要角色。例如长文本情感分析、搜索引擎、推荐系统等,相较于直接使用原文,使用好的摘要能够在提升性能的同时又不会损失太多信息。文本情感分析:又称意见挖掘、倾向性分析等。简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。互联网(如博客和论坛以及社会服务网络如大众点评)上产生了大量的用户参与的、对于诸如人物、事件、产品等有价值的评论信息。这些评论信息表达了人们的各种情感色彩和情感倾向性,如喜、怒、哀、乐和批评、赞扬等。基于此,潜在的用户就可以通过浏览这些主观色彩的评论来了解大众*对于某一事件或产品的看法。希望以上对您有所帮助~如果您对我的回答满意的话,麻烦您给个赞哦~