发布网友 发布时间:2022-04-20 20:51
共3个回答
热心网友 时间:2023-06-26 11:25
一, 质点的运动(1)----- 直线运动
1)匀变速直线运动
1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as
3.中间时刻速度 Vt / 2= V平=(V t + V o) / 2
4.末速度V=Vo+at
5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2
6.位移S= V平t=V o t + at2 / 2=V t / 2 t
7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s
时间(t):秒(s) 位移(S):米(m) 路程:米
速度单位换算: 1m/ s=3.6Km/ h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度V_o =0 2.末速度V_t = g t
3.下落高度h=gt2 / 2(从V_o 位置向下计算)
4.推论V t2 = 2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=V_o t – gt 2 / 2 2.末速度V_t = V_o – g t (g=9.8≈10 m / s2 )
3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起)
5.往返时间t=2V_o / g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
平抛运动
1.水平方向速度V_x= V_o 2.竖直方向速度V_y=gt
3.水平方向位移S_x= V_o t 4.竖直方向位移S_y=gt2 / 2
5.运动时间t=(2S_y / g)1/2 (通常又表示为(2h/g) 1/2 )
6.合速度V_t=(V_x2+V_y2) 1/2=[ V_o2 + (gt)2 ] 1/2
合速度方向与水平夹角β: tgβ=V_y / V_x = gt / V_o
7.合位移S=(S_x2+ S_y2) 1/2 ,
位移方向与水平夹角α: tgα=S_y / S_x=gt / (2V_o)
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s / t=2πR / T 2.角速度ω=Φ / t = 2π / T= 2πf
3.向心加速度a=V2 / R=ω2 R=(2π/T)2 R 4.向心力F心=mV2 / R=mω2 R=m(2π/ T)2 R
5.周期与频率T=1 / f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r / s 半径(R):米(m) 线速度(V):m / s
角速度(ω):rad / s 向心加速度:m / s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2 / R3=K(4π2 / GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm_1m_2 / r2 G=6.67×10-11N·m2 / kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2
ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/s V_2=11.2Km/s V_3=16.7Km/s
6.地球同步卫星GMm / (R+h)2=m4π2 (R+h) / T2
h≈36000 km/h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、 力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8 m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=G m_1m_2 / r2 G=6.67×10-11 N·m2/kg2 方向在它们的连线上
热心网友 时间:2023-06-26 11:26
第四章 物体平衡
1. 物体平衡条件: F合 = 0
2. 处理物体平衡问题常用方法有:
(1). 在物体只受三个力时, 用合成及分解的方法是比较好的. 合成的方法就是将物体所受三个力通过合成转化成两个平衡力来处理; 分解的方法就是将物体所受三个力通过分解转化成两对平衡力来处理.
(2). 在物体受四个力(含四个力)以上时, 就应该用正交分解的方法了. 正交分解的方法就是先分解而后再合成以转化成两对平衡力来处理的思想.
第五章 匀速圆周运动
1.对匀速圆周运动的描述:
①.线速度的定义式: v = (s指弧长或路程,不是位移
②.角速度的定义式: =
③.线速度与周期的关系:v =
④.角速度与周期的关系:
⑤.线速度与角速度的关系:v = r
⑥.向心加速度:a = 或 a =
2. (1)向心力公式:F = ma = m = m
(2) 向心力就是物体做匀速圆周运动的合外力,在计算向心力时一定要取指向圆心的方向做为正方向。向心力的作用就是改变运动的方向,不改变运动的快慢。向心力总是不做功的,因此它是不能改变物体动能的,但它能改变物体的动量。
第六章 万有引力
1.万有引力存在于万物之间,大至宇宙中的星体,小到微观的分子、原子等。但一般物体间的万有引力非常之小,小到我们无法察觉到它的存在。因此,我们只需要考虑物体与星体或星体与星体之间的万有引力。
2.万有引力定律:F = (即两质点间的万有引力大小跟这两个质点的质量的乘积成正比,跟距离的平方成反比。)
说明:① 该定律只适用于质点或均匀球体;② G称为万有引力恒量,G = 6.67×10-11N•m2/kg2.
3. 重力、向心力与万有引力的关系:
(1). 地球表面上的物体: 重力和向心力是万有引力的两个分力(如图所示, 图中F示万有引力, G示重力, F向示向心力), 这里的向心力源于地球的自转. 但由于地球自转的角速度很小, 致使向心力相比万有引力很小, 因此有下列关系成立:
F≈G>>F向
因此, 重力加速度与向心加速度便是加速度的两个分量, 同样有:
a≈g>>a向
切记: 地球表面上的物体所受万有引力与重力并不是一回事.
(2). 脱离地球表面而成了卫星的物体: 重力、向心力和万有引力是一回事, 只是不同的说法而已. 这就是为什么我们一说到卫星就会马上写出下列方程的原因:
= m = m
4. 卫星的线速度、角速度、周期、向心加速度和半径之间的关系:
(1). v= 即: 半径越大, 速度越小. (2). = 即: 半径越大, 角速度越小.
(3). T =2 即: 半径越大, 周期越大. (4). a= 即: 半径越大, 向心加速度越小.
说明: 对于v、 、T、a和r 这五个量, 只要其中任意一个被确定, 其它四个量就被唯一地确定下来. 以上定量结论不要求记忆, 但必须记住定性结论.
第七章 动量
1. 冲量: I = Ft 冲量是矢量,方向同作用力的方向.
2. 动量: p = mv 动量也是矢量,方向同运动方向.
3. 动量定律: F合 = mvt – mv0
第八章 机械能
1. 功: (1) W = Fs cos (只能用于恒力, 物体做直线运动的情况下)
(2) W = pt (此处的“p”必须是平均功率)
(3) W总 = △Ek (动能定律)
2. 功率: (1) p = W/t (只能用来算平均功率)
(2) p = Fv (既可算平均功率,也可算瞬时功率)
3. 动能: Ek = mv2 动能为标量.
4. 重力势能: Ep = mgh 重力势能也为标量, 式中的“h”指的是物体重心到参考平面的竖直距离.
5. 动能定理: F合s = mv - mv
6. 机械能守恒定律: mv + mgh1 = mv + mgh2
高一物理公式总结
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT^2 ΔS为相邻连续相等奔?T)内位移之差
9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N•m^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率
(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功
热心网友 时间:2023-06-26 11:26
必修2其实还是运动学的。
无非涉及了曲线运动,要了解:速度切线,轨迹,合外力三条线的关系,轨迹夹在其中。这是你学高中电学中静电场,静电荷的依据。
然后就是设计万有引力与航天。深刻了解曲线运动就可以了,开普勒行星运动3定理掌握即可。特别是开普勒第二定理,卫星扫过的面积关系。
然后就是圆周运动在重力场下,物理最高点和数学最高点满足的关系,也就是v=根号下GR.这是做高中运动学计算的重要突破口!