发布网友 发布时间:2024-09-17 09:29
共1个回答
热心网友 时间:2024-10-02 06:48
2(xy+yz+zx)=(x+y+z)^2-(x^2+y^2+z^2)
=-10
xy+yz+zx=-5
x^3+y^3+z^3-3xyz
=[(x+y)^3-3xy(x+y)]+z^3-3xyz
=[(x+y)^3+z^3]-3xy(x+y+z)
=[(x+y+z)^3-3(x+y)z(x+y+z)]-3xy(x+y+z)
=(x+y+z)^3-3(xy+yz+zx)(x+y+z)
=(x+y+z)[(x+y+z)^2-3(xy+yz+zx)]
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=3*(19-(-5))
所以30-3xyz=72
所以xyz=-14
热心网友 时间:2024-10-02 06:44
2(xy+yz+zx)=(x+y+z)^2-(x^2+y^2+z^2)
=-10
xy+yz+zx=-5
x^3+y^3+z^3-3xyz
=[(x+y)^3-3xy(x+y)]+z^3-3xyz
=[(x+y)^3+z^3]-3xy(x+y+z)
=[(x+y+z)^3-3(x+y)z(x+y+z)]-3xy(x+y+z)
=(x+y+z)^3-3(xy+yz+zx)(x+y+z)
=(x+y+z)[(x+y+z)^2-3(xy+yz+zx)]
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=3*(19-(-5))
所以30-3xyz=72
所以xyz=-14