首页 热点专区 小学知识 中学知识 出国留学 考研考公
您的当前位置:首页正文

并发编程(4)ConcurrentHashMap源码分析

2024-12-10 来源:要发发知识网

概述

ConcurrentHashMap,通过这个名字,可以知道Concurrent是并发的,HashMap是我们常用的一种用来存放键值对的数据结构,所以ConcurrentHashMap就是一种用来解决高并发的HashMap。这个是JDK在1.5之后提供的一种数据结构。我们知道Java中其实已经有了HashTable这个线程安全的Map,但是他是通过对整个table使用synchronized来保证线程安全的,当有多个线程对HashTable进行读写的时候,每次只能有一个线程会获取到HashTable的对象锁,别的只能处于等待状态,所以在高并发的情况下,它的效率是比较低的。
当然JDK还提供了另外一种方式,那就是Collections.synchronizedMap(hashMap),这个底层也是通过synchronized对要高并发的数据结构来实现线程安全的。
通过上面的分析可以知道,ConcurrentHashMap为了解决synchronized在高并发时的低效问题,ConcurrentHashMap之所以比HashTable高效,是因为他并不是对整个HashMap上锁,而且在JDK1.8跟之前的JDK1.6,1.7的实现都不一样,下面进行对比一下

  • JDK 1.6:ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构, 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素, 每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。
  • JDK 1.8:放弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap。

继承关系

ConcurrentHashMap

通过继承关系,可以发现,ConcurrentHashMap并没有继承HashMap,而是单独实现了ConcurrentMap这个接口,其余的跟HashMap是一样的

成员变量

    //table的最大容量
    private static final int MAXIMUM_CAPACITY = 1 << 30;
    //table的默认容量16
    private static final int DEFAULT_CAPACITY = 16;
    //默认的并发度为16
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    //负载因子
    private static final float LOAD_FACTOR = 0.75f;
    //链表转化为红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;
    //红黑树转链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    //红黑树的最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;

    //存放Node的数组
    transient volatile Node<K,V>[] table;
    private transient volatile Node<K,V>[] nextTable;
    private transient volatile long baseCount;
    //sizeCtl作为table是否在初始化或者在resize的标志,如果为负数说明正在初始化或者扩容,需要table进行CRUD操作的线程只能等待,稍后进行重试,否则就可以直接进行CRUD操作
    //正数则表明table没有初始化
    private transient volatile int sizeCtl;
    //该节点是否已经移动到新数组中去
    static final int MOVED     = -1; 
    //是否是TREEBIN节点
    static final int TREEBIN   = -2; 

除此之外,还有几个类需要解释一下

基本原理

TreeNode

   static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  //根节点
        TreeNode<K,V> left;//左节点
        TreeNode<K,V> right;//右节点
        TreeNode<K,V> prev; //上个节点的指针
        boolean red;//默认节点为黑
        TreeNode(int hash, K key, V val, Node<K,V> next,
                 TreeNode<K,V> parent) {
            super(hash, key, val, next);
            this.parent = parent;
        }

        Node<K,V> find(int h, Object k) {
            return findTreeNode(h, k, null);
        }

      //查找相应的树节点
   final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
      //此处省略一万行代码......
    }

跟一般的树节点都差不多,在前面分析二叉树的时候也差不多是这种数据结构,所以还是比较好理解的,注释说Nodes for use in TreeBins,也就是说这个TreeNode是用来服务TreeBin的,那么继续看Treebins

TreeBins

这个通过注释可以知道,是用来包装TreeNode的,然后作为红黑树的树节点

static final class TreeBin<K,V> extends Node<K,V> {
TreeNode<K,V> root;
  volatile TreeNode<K,V> first;//TreeNode的根节点
  volatile Thread waiter;//waiter线程
  volatile int lockState;//当前节点的锁状态
    // values for lockState
        static final int WRITER = 1; // 获得写数据的锁状态
        static final int WAITER = 2; // 等待写数据的锁状态
        static final int READER = 4; // 添加数据时的锁状态

        TreeBin(TreeNode<K,V> b) {
            super(TREEBIN, null, null, null);
            this.first = b;//头结点赋值
            TreeNode<K,V> r = null;
            //递归遍历传过来的Node,从根节点开始
          for (TreeNode<K,V> x = b, next; x != null; x = next)
           {
              next = (TreeNode<K,V>)x.next;//拿到下一个节点
              x.left = x.right = null;//将左右节点置空,因为需要重新赋值
              //判断r节点是否为空
              if (r == null) {
                    x.parent = null;//根节点置空
                    x.red = false;//黑子树
                    r = x;//x赋值为r节点
                }
                else {
                    K k = x.key;//拿到key
                    int h = x.hash;//计算hash值
                    Class<?> kc = null;//K对应的泛型实体类
                    //从根节点r开始遍历
                    for (TreeNode<K,V> p = r;;) {
                        int dir, ph;
                        K pk = p.key;
                     if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                           (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);
                            TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            r = balanceInsertion(r, x);
                            break;
                        }
                    }
                }
            }
            this.root = r;//将r赋值给根节点
            assert checkInvariants(root);
        }
    }

ForwardingNode

 static final class ForwardingNode<K,V> extends Node<K,V> {
      final Node<K,V>[] nextTable;
        ForwardingNode(Node<K,V>[] tab) {
            super(MOVED, null, null, null);
            this.nextTable = tab;
        }
        Node<K,V> find(int h, Object k) {
      // loop to avoid arbitrarily deep recursion on forwarding nodes
            outer: for (Node<K,V>[] tab = nextTable;;) {
                Node<K,V> e; int n;
                if (k == null || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null)
                    return null;
                for (;;) {
                    int eh; K ek;
                    if ((eh = e.hash) == h &&
               ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
               if (eh < 0) {
                        if (e instanceof ForwardingNode) {
          tab = ((ForwardingNode<K,V>)e).nextTable;
          continue outer;
                        }
                        else
                            return e.find(h, k);
                    }
                    if ((e = e.next) == null)
                        return null;
                }
            }
        }
    }

ForwardingNode有两个功能,一个是用来指向nextTable节点,便于将原有的table数组复制到新的table中,另外一个是用来占位空节点,告诉其他节点这个节点已经被处理过了,自动遍历后面的节点。

CAS操作

tabAt


    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

获得在i索引位置上的Node节点

casTabAt

    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) {
        return  ((long)i << ASHIFT) + ABASE, c, v);
    }
  • 1.利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少
  • 2.在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改

setTabAt

    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }

利用volatile方法设置节点位置的值

核心方法

构造方法

ConcurrentHashMap_constructor

之前分析过HashMap的源码,所以看这些还是比较轻松的,ConcurrentHashMap采用的是懒加载,也就是存入第一对KeyValue的时候才会去初始化table,所以前面四个构造方法只是做了一些参数配置,只有最后一个构造方法,才会去真正的初始化,下面重点看一下最后一个方法

  public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }
  
 public void putAll(Map<? extends K, ? extends V> m) {
       tryPresize(m.size());
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            putVal(e.getKey(), e.getValue(), false);
    }

最后调用了putAll方法,这个会在后面的put方法里面再重点讲解。

transfer方法

transfer实际上执行的就是table数组的扩容操作,

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                //创建一个容量是原来2倍的table数组
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //创建一个ForwardingNode,指向新table,并且用于填充已经移动的Node位置
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if 
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
              //如果所有的节点都已经完成复制工作  
              //就把nextTable赋值给table 清空临时对象nextTable

                    nextTable = null;
                    table = nextTab;
                    // 扩容至现在容量的0.75倍
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if  SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
             //用ForwardingNode来填充Null节点
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
           //如果当前节点移动过,将次标志设置为true
           //这样后续线程访问便可以直接跳过此节点
              advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                        //普通Node节点
                            int runBit = fh & n;//通过runBit将链表打散,便于高效遍历
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                        //TreeBin节点,
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                    //通过h & n的值将TreeBin的节点进行打散
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                       //如果扩容后已经不再需要tree的结构 反向转换为链表结构
                     ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                             //在nextTable的i位置上插入一个链表   
                            setTabAt(nextTab, i, ln);
                            //在nextTable的i+n的位置上插入另一个链表
                            setTabAt(nextTab, i + n, hn);
                //在table的i位置上插入forwardNode节点  表示已经处理过该节点
                            setTabAt(tab, i, fwd);
               //设置advance为true 返回到上面的while循环中 就可以执行i--操作
                            advance = true;
                        }
                    }
                }
            }
        }
    }

  • 1.根据当前数组长度n,新建一个两倍长度的数组nextTable;
  • 2.初始化ForwardingNode节点,其中保存了新数组nextTable的引用,在处理完每个槽位的节点之后当做占位节点,表示该槽位已经处理过了
  • 3.通过for自循环处理每个槽位中的链表元素,默认advace为真,通过CAS设置transferIndex属性值
  • 4.如果槽位中没有节点,则通过CAS插入在第二步中初始化的ForwardingNode节点,用于告诉其它线程该槽位已经处理过了
  • 5.如果当前Node已经被线程A处理了,那么线程B处理到这个节点时,取到该节点的hash值应该为MOVED,值为-1,则直接跳过,继续处理下一个Node
  • 6.处理不为null的节点,如果是链表结构,先定义两个变量节点ln和hn,通过CAS把ln链表设置到新数组的i位置,hn链表设置到i+n的位置
  • 7.如果该槽位是红黑树结构,同样将节点分成两类,通过CAS插入到nextTable中

helpTransfer

如果一个线程在进行扩容的时候中断了,但是此时nextTable已经创建了,那么他就会调用helpTransfer方法,帮助扩容

 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if  SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

这是一个协助扩容的方法。这个方法被调用的时候,当前ConcurrentHashMap一定已经有了nextTable对象,首先拿到这个nextTable对象,调用上面讲到的transfer方法来进行扩容

put方法

首先调用了put方法

public V put(K key, V value) {
    return putVal(key, value, false);
}

紧接着调用了putVal方法,下面来分析下一年putVal方法

  final V putVal(K key, V value, boolean onlyIfAbsent) {
  //key和value都不能为空
   if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());//计算hash值
        int binCount = 0;//链表长度
        //开启死循环
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
            //table为null或者table的长度为0,初始化table
                tab = initTable();
            //根据hash值计算table的索引
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            //如果索引处为null,则直接在此处进行插入
                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
            //通过CAS进行插入,插入成功之后跳出循环
                    break;                   
            }
            else if ((fh = f.hash) == MOVED)
            //当遇到表ForwardNode时,需要对表进行整合
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //采用同步代码块进行上锁
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                    //普通节点
                        if (fh >= 0) {
                            binCount = 1;
                            //遍历所有节点
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                           //如果hash值跟key值都相同,则进行值替换
            if (e.hash == hash && ((ek = e.key) == key 
            ||(ek != null && key.equals(ek)))) {
                               oldVal = e.val;
                                if (!onlyIfAbsent)
                                   e.val = value;
                                    break;
                                }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) 
                            {
                    pred.next = new Node<K,V>(hash, key,  value, null);
                                    break;
                                }
                            }
                        }
                        //树节点
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                //判断链表长度,如果链表长度大于阈值,进行树节点转换
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);//改变table中的元素的个数
        return null;
    }

下面分解一下步骤:

  • 1.计算记录的key的hashCode,然后通过hashcode计算table的index位置
  • 2.获取table[index],为null直接采用casTabAt插入一条新的记录
  • 3.不为null,则锁住根节点,然后通过节点的hashcode值来区分是链表还是红黑树
  • 4.遍历链表或者红黑树,找到相应的节点,进行更新操作
  • 5.如果是更新操作,则不需要进行transfer操作,否则判断一下更新之后的size有没有超过阈值,主要是判断链表的节点数跟table的数组长度

如何保证线程安全

当对table中的某个节点进行写操作的时候,如果为null,直接进行插入,注意如果不为null,则用syncronized关键字锁住当前节点,然后进行写操作。为什么为空的时候插入不需要上锁,因为ConcurrentHashMap采用的是CAS的乐观锁机制,如果有线程在进行修改,就会在外面等待,然后过一会儿再过来查询一下,这样可以保证高效并发。

get方法

  public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());//计算hash值
        //根据hash值定位元素
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
             //如果搜索到的节点key与传入的key相同且不为null,直接返回这个节点  
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
            //树节点
                return (p = e.find(h, key)) != null ? p.val : null;
            //通过寻址法进行寻找
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
  • 1.通过计算key的hash值进而计算key在table中的index
  • 2.拿到table[index],为null,直接返回null
  • 3.如果table[index]不为null,通过Node的hash值来判断是链表还是红黑树
  • 4.遍历到相应的value之后直接返回,否则返回null

如何保证线程安全
首先当多个线程同时读取的时候,ConcurrentHashMap给每个Node节点加了volatile关键字修饰来保证可见性。

总结

看了很多数据结构,感觉ConcurrentHashMap是最复杂的,里面涉及到了很多的CAS操作,以及硬件层的线程安全操作,分析了好几天,才弄懂,下面总结一下c的JDK1.7跟1.8的区别。

JDK 1.7

ConcurrentHashMap1

JDK1.8

ConcurrentHashMap 1

对比分析

  • 1.7采用链表,1.8使用红黑树来替换之前的链表,提高了查找的效率。
  • 1.7版本锁的粒度是基于Segment的,采用的是分段锁,粒度是每个数组1.8的实现降低锁的粒度到每个Node节点,
  • 1.7采用的Segment继承自ReentrantLock,自带锁,1.8的数据结构采用数组+链表+红黑树,使用了大量 的CAS操作,提升了高并发时的性能,丢弃了分段锁的概念。
  • 1.7采用的是ReentrantLock进行同步,1.8 采用了synchronized进行同步,其实一开始没理解,因为ReentrantLock比synchronized更加灵活,后来思考了一下觉得是因为锁的粒度进一步降低,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势不大。

参考资料

显示全文