3D数学向量的基础原理在计算机中的表现
C++中实现向量的编程
Vector3.h.png
Vector3.png
- 接着在头文件进行Vector3的定义,以及点乘(Dot)和叉乘和各种运算符的重载
#ifndef __VECTOR3_H_INCLUDED__
#define __VECTOR3_H_INCLUDED__
#include <math.h>
class Vector3
{
public:
float x, y, z;
Vector3(){}
Vector3(const Vector3 &a) :x(a.x), y(a.y), z(a.z){}
Vector3(float nx, float ny, float nz) :x(nx), y(ny), z(nz){}
//零向量
void Zero()
{
x = y = z = 0.0f;
}
//计算单位向量,进行标准化
void normalize()
{
float magsq = x*x + y*y + z*z; //平发根之前
if (magsq > 0.0f) //必须比0大
{
float temp = 1 / sqrt(magsq);
x *= temp;
y *= temp;
z *= temp;
}
}
//负向量,运算符的重载
Vector3 operator-() const { return Vector3(-x, -y, -z); }
Vector3 operator*(float a /*标量*/) const
{
return Vector3(x*a, y*a, z*a);
}
Vector3 operator/(float a) const
{
float temp = 1.0f / a;
return Vector3(x*temp, y*temp, z*temp);
}
Vector3 operator*=(float a)
{
x *= a;
y *= a;
z *= a;
return *this;
}
Vector3 operator/=(float a)
{
float temp = 1.0f / a;
x *= temp;
y *= temp;
z *= temp;
return *this;
}
Vector3 operator+(const Vector3 &a)const
{
return Vector3(x+a.x,y+a.y,z+a.z);
}
Vector3 operator+=(const Vector3 &a)
{
x += a.x;
y += a.y;
z += a.z;
return *this;
}
Vector3 operator-=(const Vector3 &a)
{
x -= a.x;
y -= a.y;
z -= a.z;
return *this;
}
Vector3 operator-(const Vector3 &a)const
{
return Vector3(x - a.x, y - a.y, z - a.z);
}
//点乘
float operator*(const Vector3 &a)const
{
return x*a.x + y*a.y + z*a.z;
}
};
//计算向量的模
inline float vectorMag(const Vector3 &a)
{
return sqrt(a.x*a.x + a.y*a.y + a.z*a.z);
}
//非成员函数,实现向量左乘
inline Vector3 operator*(float k, const Vector3 &v)
{
return Vector3(k*v.x, k*v.y, k*v.z);
}
//计算两点之间的距离
inline float distance(const Vector3 &a, const Vector3 &b)
{
float dx = a.x - b.x;
float dy = a.y - b.y;
float dz = a.z - b.z;
//计算向量的模。也就是大小,距离
return sqrt(dx*dx+dy*dy+dz*dz);
}
//计算叉乘
inline Vector3 crossProduct(const Vector3&a, const Vector3 &b)
{
return Vector3(
a.y*b.z-a.z*b.y,
a.z*b.x-a.x*b.z,
a.x*b.y-a.y*b.x
);
}
#endif