首页 热点专区 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

【知识】有理数知识点考点难点总结归纳

2022-08-16 来源:要发发教育
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

【关键字】知识

第一章 有理数知识点总结归纳

一、正数和负数

⒈正数和负数的概念

负数:比0小的数; 正数:比0大的数。 0既不是正数,也不是负数

注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。强调:带正号的数不一定是正数,带负号的数不一定是负数。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量.习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.

比如: 零上8⒈表示为:+8⒈;零下8⒈表示为:-8⒈ 2、有理数

1.有理数的概念

⒈正整数、0、负整数统称为整数(0和正整数统称为自然数) ⒈正分数和负分数统称为分数

⒈正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

2.数轴

(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。 注意:数轴是一条向两端无限延伸的直线;

原点、正方向、单位长度是数轴的三要素,三者缺一不可; 同一数轴上的单位长度要统一; ⒈数轴的三要素都是根据实际需要规定的。 (2)数轴上的点与有理数的关系

所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 所有的有理数都可以用数轴上的点表示出来。

1文档收集于互联网,已整理,word版本可编辑.

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

(3)利用数轴表示两数大小

在数轴上数的大小比较,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数大于负数; 两个负数比较,距离原点远的数比距离原点近的数小。 (4)数轴上特殊的最大(小)数 最小的自然数是0,无最大的自然数; 最小的正整数是1,无最大的正整数; 最大的负整数是-1,无最小的负整数 3.相反数:

(1)只有符号不同的两个数叫做互为相反数;0的相反数是0;

(2)互为相反数的两数的和为0, 即:若a、b互为相反数,则a+b=0 (3)相反数的求法:

求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b),化简得-5a-b);

求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5) (4)多重符号的化简

多重符号的化简规律:

“+”号的个数不影响化简的结果,可以直接省略;

“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

4.绝对值:

(1)绝对值的几何定义

数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:|a|

(2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数;可用字母表示为:①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。

可归纳为①:a≥0,<⒈> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。) ②a≤0,<⒈> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

2文档收集于互联网,已整理,word版本可编辑.

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

(3)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

4.有理数比大小:

(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

(2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

(3)大数-小数 > 0,小数-大数 < 0. 4.倒数:

(1)乘积为1的两个数互为倒数;注意:0没有倒数; (2)若a,b互为倒数,则ab=1; (3)求倒数

求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即可;

②求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

④倒数等于它本身的数是1或-1;

三、有理数的加减法

1、有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

3文档收集于互联网,已整理,word版本可编辑.

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

(3)一个数与0相加,仍得这个数. 2.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;

(2)加法的结合律:(a+b)+c=a+(b+c).

在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

①互为相反数的两个数先相加——“相反数结合法”;

②符号相同的两个数先相加——“同号结合法”; ③分母相同的数先相加——“同分母结合法”; ④几个数相加得到整数,先相加——“凑整法”; ⑤整数与整数、小数与小数相加——“同形结合法”。 3.有理数减法法则:

减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

四、有理数的乘除法

1.有理数乘法法则:

法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)

法则二:任何数同0相乘,都得0;

法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;

法则四:几个数相乘,如果其中有因数为0,则积等于0.

4文档收集于互联网,已整理,word版本可编辑.

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

2.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;

(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 3.有理数除法法则:

(1)除以一个不等0的数,等于乘以这个数的倒数。

(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0 4.有理数的加减乘除混合运算

(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

(2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行。

五、有理数乘方

1.乘方的概念

(1)求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。乘方中,相同的因式叫做底数,相同因式的个数叫做指数。 记作:

an,在

an 中,a 叫做底数,n 叫做指数。

2.乘方的性质

(1)负数的奇次幂是负数,负数的偶次幂的正数。

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

5文档收集于互联网,已整理,word版本可编辑.

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

3.有理数的混合运算

做有理数的混合运算时,应注意以下运算顺序: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

4.科学记数法:

把一个大于10的数记成a10的形式(其中a大于或等于1且小于10,n是正整数),这种记数法叫科学记数法. 强调:a是整数数位只有一位的数. 5.近似数

(1)近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

(2)求近似数:按精确位的要求,用四舍五入法求近似数。 (3)有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

此文档是由网络收集并进行重新排版整理.word可编辑版本!

n6文档收集于互联网,已整理,word版本可编辑.

因篇幅问题不能全部显示,请点此查看更多更全内容