首页 热点专区 小学知识 中学知识 出国留学 考研考公
您的当前位置:首页正文

A nonlinear primal-dual method for total variation-based image restoration

2021-09-26 来源:要发发知识网
SIAMJ.SCI.COMPUT.

Vol.20,No.6,pp.1964–1977

c1999SocietyforIndustrialandAppliedMathematics󰀈

ANONLINEARPRIMAL-DUALMETHODFORTOTAL

VARIATION-BASEDIMAGERESTORATION∗

TONYF.CHAN†,GENEH.GOLUB‡,ANDPEPMULET§

Abstract.Wepresentanewmethodforsolvingtotalvariation(TV)minimizationproblemsinimagerestoration.Themainideaistoremovesomeofthesingularitycausedbythenondif-ferentiabilityofthequantity|∇u|inthedefinitionoftheTV-normbeforeweapplyalinearizationtechniquesuchasNewton’smethod.Thisisaccomplishedbyintroducinganadditionalvariableforthefluxquantityappearinginthegradientoftheobjectivefunction,whichcanbeinterpretedasthenormalvectortothelevelsetsoftheimageu.Ourmethodcanbeviewedasaprimal-dualmethodasproposedbyConnandOverton[APrimal-DualInteriorPointMethodforMinimizingaSumofEuclideanNorms,preprint,1994]andAndersen[Ph.D.thesis,OdenseUniversity,Denmark,1995]fortheminimizationofasumofEuclideannorms.Inadditiontopossessinglocalquadraticconvergence,experimentalresultsshowthatthenewmethodseemstobegloballyconvergent.

Keywords.imagerestoration,totalvariation,primal-dual,conjugategradientAMSsubjectclassifications.68U10,65F10,65K10PII.S1064827596299767

1.Introduction.Duringsomephasesofthemanipulationofanimagesomerandomnoiseandblurringisusuallyintroduced.Thepresenceofthisnoiseandblurringmakesthelatterphasesoftheimageprocessingdifficultandinaccurate.

Thealgorithmsfornoiseremovalanddeblurringhavebeenmainlybasedonleastsquares.TheoutputoftheseL2-basedalgorithmswillbeacontinuousfunction,whichcannotobviouslybeagoodapproximationtoouroriginalimageifitcontainsedges.Toovercomethisdifficultyatechniquebasedontheminimizationofthetotalvariationnorm(TV-norm)subjecttosomenoiseconstraintsisproposedin[19],whereatimemarchingschemetosolvetheassociatedEuler–Lagrangeequationswasalsoutilized.Sincethismethodcanbeslowduetostabilityconstraintsinthetimestepsize,anumberofalternativemethodshavebeenproposedintheliterature[23],[7],[16].

OneofthedifficultiesinsolvingtheEuler–Lagrangeequationsisthepresenceofahighlynonlinearandnondifferentiableterm,whichcausesconvergencedifficultiesfor

bytheeditorsFebruary26,1996;acceptedforpublication(inrevisedform)November

7,1997;publishedelectronicallyMay25,1999.AnearlierversionofthisworkappearedasTechnicalreport95-43,UCLAComputationalandAppliedMathematics,UniversityofCalifornia,LosAngeles,CA,1995.

http://www.siam.org/journals/sisc/20-6/29976.html

†DepartmentofMathematics,UniversityofCalifornia,LosAngeles,405HilgardAvenue,LosAngeles,CA90095-1555(chan@math.ucla.edu).TheworkofthisauthorwassupportedbygrantsNSFDMS-9626755andONR-N00014-96-1-0277andNSFInternationalProgramU.S.-SpainResearchProjectTotalVariationMethodsinImageProcessing.

‡ComputerScienceDepartment,StanfordUniversity,Stanford,CA94305-9025(golub@sccm.stanford.edu).TheworkofthisauthorwassupportedinpartbyNSFgrantCCR-9505393andNSFInternationalProgramU.S.-SpainResearchProjectTotalVariationMethodsinImageProcessing.

§DepartmentofMathematics,UniversityofCalifornia,LosAngeles,405HilgardAvenue,LosAngeles,CA90095-1555(mulet@math.ucla.edu).Currentaddress:DepartamentdeMatem`aticaAplicada,UniversitatdeVal`encia,Dr.Moliner,50,46100Burjassot,Spain(mulet@uv.es,mulet@gata.matapl.uv.es).TheworkofthisauthorwassupportedbyDGICYTgrantsEX9428990695andPB94-0987andNSFInternationalProgramU.S.-SpainResearchProjectTotalVaria-tionMethodsinImageProcessing.

1964

∗Received

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

1965

Newton’smethodevenwhencombinedwithaglobalizationtechniquesuchasalinesearch.Theideaofournewalgorithmistoremovesomeofthesingularitycausedbythenondifferentiabilityoftheobjectivefunctionbeforeweapplyalinearizationtech-niquesuchasNewton’smethod.Thisisaccomplishedbyintroducinganadditionalvariableforthefluxquantityappearinginthegradientoftheobjectivefunction,whichcanbeinterpretedastheunitnormaltothelevelsetsoftheimagefunction.Ourmethodcanbeviewedasaprimal-dualmethodasproposedbyConnandOverton[9]andAndersen[3]fortheminimizationofasumofEuclideannorms.Wecautionthatouruseofthenameprimal-dualisbasedonadualityprincipleappliedtotheTV-norm(tobeexplainedinmoredetailinsection4)andshouldnotbeconfusedwiththepopularalgorithmsinlinearandnonlinearprogrammingwiththesamename.Experimentalresultsshowthatthenewmethodisgloballyconvergent,whereastheprimalNewtonmethodhasasmalldomainofconvergence.Itishopedthatthenewapproachcanbeappliedtoothergeometry-basedPDEmethodsinimagerestoration,suchasanisotropicdiffusion[18],affineinvariantflows[20],andmeancurvatureflows[2],sincethesamesingularitycausedby|∇u|occursintheseformulationsaswell.

Theorganizationofthispaperisasfollows:Insection2weintroducetheproblemandthenonlinearequationsassociatedwithitanddiscusshowtosolvethem.Insection3wepresentournewlinearizationtechniqueforthe(unconstrained)Tikhonovregularizationformoftheproblem.Insection4weshowthatthenewlinearizationcorrespondstoaclassicalprimal-dualformulationforsomeconvexproblems.Finally,insection5wepresentsomenumericalresultsforthedenoisingcase.

2.Totalvariationregularization.Animagecanbeinterpretedasarealfunc-tiondefinedonΩ,aboundedandopendomainofR2(forsimplicitywewillassumeΩtobearectangle),orasuitablediscretizationofthiscontinuousimage.

Ourinterestisinrestoringanimagewhichiscontaminatedwithnoiseorblurorboth.Therestorationprocessshouldrecovertheedgesoftheimage.Letusdenotebyztheobservedimageandbyutherealimage.ThemodelofdegradationweassumeisKu+n=z,wherenisaGaussianwhitenoiseandKisa(known)linearbluroperator(usuallyaconvolutionoperator).

Ingeneral,theproblemKu=z,withKacompactoperator,isillposed,soitisnotworthsolvingthisequation(oradiscretizationofit),forthedataintheusualapplicationsisinexactandthesolutionwouldbehighlyoscillatory.Butifweimposeacertainregularityconditiononthesolutionu,thentheproblembecomeswellposed.Wecanconsidertworelatedtechniquesofregularization:Tikhonovregularizationandnoiselevelconstrainedregularization.

Tikhonovregularizationconsistsofsolvingtheunconstrainedoptimizationprob-lem(2.1)

1

minαR(u)+||Ku−z||2L2u2

forsomefunctionalRwhichmeasurestheirregularityofuinacertainsenseanda

suitablychosencoefficientαwhichwillbalancethetradeoffbetweenagoodfittothedataandaregularsolution.

Anotherapproachconsistsofsolvingthefollowingconstrainedoptimizationprob-lem:(2.2)

minR(u)

u

2

subjectto||Ku−z||2L2=σ.

1966

TONYF.CHAN,GENEH.GOLUB,ANDPEPMULET

Hereweseekasolutionwithminimumirregularityfromallcandidateswhichmatchtheknownnoiselevel.

ExamplesofregularizationfunctionalsthatcanbefoundintheliteratureareR(u)=||u||,||∆u||,||∇u·∇u||,where∇isthegradientand∆istheLaplacian;see[21]and[14].Thedrawbackofusingthesefunctionalsisthattheydonotallowdiscontinuitiesinthesolution,andsinceweareinterestedinrecoveringfeaturesoftheimage,theyarenotsuitableforourpurposes.

In[19],itisproposedtouseasregularizationfunctionaltheso-calledTV-norm:

󰀁󰀅󰀁

2(2.3)u2|∇u|dxdy=TV(u)=x+uydxdy.

TheTV-normdoesnotpenalizediscontinuitiesinuandthusallowsustorecover

theedgesoftheoriginalimage.ForsimplicityweuseinthissectiontheTikhonovformulationoftheproblem.Treatmentoftheconstrainedproblem(2.2)canbefoundin[8].Hencetherestorationproblemcanbewrittenas

󰀆󰀁󰀄󰀅122αu2(2.4)dxdy,minx+uy+(Ku−z)u2Ωthatis,(2.5)

minα|||∇u|||L1

u

1

+||Ku−z||2L2,2

TheEuler–Lagrangeequationforthisproblem,assuminghomogeneousNeumann

boundaryconditions,is

󰀆󰀄∇u(2.6)+K∗(Ku−z),0=−α∇·

|∇u|whereK∗istheadjointoperatorofKwithrespecttotheL2innerproduct.Thisequationisnotwelldefinedatpointswhere∇u=0,duetothepresenceoftheterm1/|∇u|.AcommonlyusedtechniquetoovercomethisdifficultyistoslightlyperturbtheTV-normfunctionaltobecome

󰀁󰀃

(2.7)|∇u|2+βdxdy,

󰀅

2|∇u|=u2x+uy.

whereβisasmallpositiveparameter.In[1]itisshownthatthesolutionsofthese

perturbedproblemsconvergetothesolutionof(2.4)whenβ→0.Sonowtheproblemis

󰀁󰀃

1

|∇u|2+βdxdy+||Ku−z||2minα(2.8)L2,u2Ωwhichcanbeshowntobestrictlyconvexifα>0andKisinvertible,whichwewill

assumehenceforth.ItscorrespondingEuler–Lagrangeequationis

󰀌󰀋

∇u(2.9)+K∗(Ku−z)=g(u).0=−α∇·󰀃|∇u|2+β|∇u|+β

Themaindifficultythatthisequationposesisthelinearizationofthehighlynonlinearterm−∇·(√∇u2).

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

1967

Anumberofmethodshavebeenproposedtosolve(2.9).Rudin,Osher,andFatemi[19]usedatimemarchingschemetoreachthesteadystateoftheparabolicequationut=−g(u)withinitialconditionu=z:

󰀌󰀋

∇u(2.10)−K∗(Ku−z),u(x,0)=z(x).ut=α∇·󰀃|∇u|2+βdoesnotworksatisfactorilyinthesensethatitsdomainofconvergenceisverysmall.Thisisespeciallytrueiftheregularizingparameterβissmall.Ontheotherhand,ifβisrelativelylarge,thenthistermiswellbehaved.Soitisnaturaltouseacontinuationprocedurestartingwithalargevalueofβandgraduallyreducingittothedesiredvalue.Chan,Chan,andZhouproposedsuchanapproachin[7].Althoughthismethodislocallyquadraticallyconvergent,thechoiceofthesequenceofsubproblemstosolveiscrucialforitsefficiency.Theauthorshavenotsucceededinfindingafullysatisfactoryselectionprocedure,althoughsomeheuristicscanbeused.

3.Anewlinearizationbasedonadualvariable.Weproposehereabetter

∇utechniquetolinearizetheterm∇·(|∇u|).Thistechniquebearssomesimilaritytotechniquesfromsomespecificnonlinearprimal-dualoptimizationmethods[3],[9]andgivesabetterglobalconvergencebehaviorthanthatoftheusualNewton’scontinua-tionmethod.Inthenextsectionwegiveajustificationoftheprimal-dualnatureofthealgorithmthatwepresentbelow.

Themethodisbasedonthefollowingsimpleobservation.Whilethesingularityandnondifferentiabilityofthetermw=∇u/|∇u|isthesourceofthenumericalproblems,witselfisusuallysmoothbecauseitisinfacttheunitnormalvectortothelevelsetsofu.Thenumericaldifficultiesariseonlybecausewelinearizeitinthewrongway.

Theideaofthenewmethodistointroduce(3.1)

w=󰀃|∇u|2+β∇uStartingwithu0=z,ateachstepuk+1isobtainedasthesolutionofthelineardifferential-convolutionequation(2.11),whosecoefficientsarecomputedfromuk.Thismethodisrobustbutonlylinearlyconvergent.

Duetothepresenceofthehighlynonlinearterm∇·(√∇u2),Newton’smethod

|∇u|+β

Thismethodcanbeslowlyconvergentduetostabilityconstraints.VogelandOman[23]proposedthefollowingfixedpointiterationtosolvetheEuler–Lagrangeequation:

󰀌󰀋

k+1∇u(2.11)−α∇·󰀃+K∗(Kuk+1−z)=0.

k2|∇u|+βasanewvariableandreplace(2.9)bythefollowingequivalentsystemofnonlinear

PDEs:(3.2)

−α∇·w+K∗(Ku−z)=0,

󰀃

w|∇u|2+β−∇u=0.

Wecanthenlinearizethis(u,w)system,forexample,byNewton’smethod.Thisapproachissimilartothetechniqueofintroducingafluxvariableinthemixedfinite

1968

TONYF.CHAN,GENEH.GOLUB,ANDPEPMULET

Table3.1

ComparisonofthenumberofiterationsrequiredbyNewton’smethodtosolvef(x)=0andg(x)=0,fora=0.9999,fordifferentβ(horizontally)anddifferentinitialguessesx0(vertically).A∗meansthatthecorrespondingiterationfailedtoconverge.

Newton’siterationforg(x)=010−210−310−410−57643565246643565435753467Newton’siterationforf(x)=010−210−310−410−5*966**84**1075**96***85***x0\\β

1234510−110−1elementmethod[4].Aswewillseeinthenextsection,theseequationsare,precisely,theequationsofasaddlepointproblemforwhichtheproblem(2.4)istheprimalproblemandwisthevariableofthedualproblem.

Forcompletenesswecomparethelinearizationoftheusystem,

󰀄󰀄󰀆󰀆󰀈󰀇

1∇u∇uT

−α∇·I−(3.3)∇+K∗Kδu=−g(u),2|∇u||∇u|tothelinearizationofthe(w,u)system,󰀍󰀏󰀂󰀎󰀇󰀈󰀇󰀈w∇uT

δwf(w,u)|∇u|−I−|∇u|∇

=−(3.4).δug(w,u)−α∇·K∗K

Equation(3.4)canbesolvedbyfirsteliminatingδwandsolvingtheresultingequation

forδu:

󰀄󰀆󰀆󰀈󰀄󰀇

w∇uT1

(3.5)I−∇+K∗Kδu=−g(u).−α∇·

|∇u||∇u|Afterδuisobtainedwecancomputeδwby

󰀄󰀆1w∇uT∇u(3.6)δw=I−∇δu−w+.

|∇u||∇u||∇u|

Wenotethatthecostperiterationofournewlinearizationtechniqueisonlyslightly

higherthanforthestandardNewton’smethod(3.3),becausethemaincostisthesolutionofthedifferential-convolutionequations(3.3)and(3.5)forδu.

Themotivationisthatthe(w,u)systemissomehowbetterbehavedthantheusystem.Althoughatthispointwedonothaveacompletetheorytosupportthis,wewillnowgiveascalarexamplethatcanexplainthebetterconvergencebehaviorofthenewapproach.equations󰀃󰀃WecompareNewton’smethodappliedtotheequivalent

22+β)=0(whichresembles(3.1))andg(x)=ax+β−x=0f(x)=a−(x/x󰀃

(whichresemblesw|∇u|2+β−∇u=0),wherea≈1andβ≈0.InFigure3.1wecanseethatglooksmore“linear”thanfovermuchofthex-axis.Inparticular,Newton’smethodappliedtofdivergeswhentheinitialguessisnotclosetothesolution,whereasitconvergeswhenappliedtogandforanypositiveinitialguess.ThisisconfirmedbythenumericalresultsshowninTable3.1.WebelievethatthereasonwhythealgorithmpresentedhereshowssuchadramaticconvergenceimprovementoverthestandardNewton’smethodispreciselythisbetterlinearization.

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

x 10−31969

10.80.60.40.20g(x)=0.9999*sqrt(x^2+1e−4)−xf(x)=0.9999−x/sqrt(x^2+1e−4)f(x)−0.2−0.4−0.6−0.8−10g(x)0.511.522.533.544.55Fig.3.1.Plotoff(x)andg(x).They-axishasbeenscaledbyafactorof10−3.4.Duality.Thegoalofthissectionistoshowthatproblem(2.4)istheprimalproblemforacorrespondingdualproblemandthatthesolutionforbothischarac-terizedbypreciselythesystemofequations(3.2)involvingboththeprimalandthedualvariables.

Ascanbeseenin[12],forinstance,theTV-normadmitsthefollowingdualformulation:

󰀊󰀉󰀁

(4.1)−u∇·wdxdy:w∈(C0(Ω))2,󰀒w󰀒∞≤1,TV(u)=sup

(Ω)isthesetofsmoothfunctionsonΩthatvanishontheboundary∂Ω.whereC0

Itisfairlyeasytoseethatthisextends(2.3)tonondifferentiableu.Actually,forubelongingtotheSobolevspaceW1,1(Ω),anargumentusingintegrationbypartsshowsthatthesolutionwtotheproblem

󰀁

u∇·wdxdysup

|w|≤1

satisfiesinthelimit

w(x)=

∇u(x)|∇u(x)|

foralmostallx∈Ωsuchthat∇u(x)=0or,equivalently,(4.2)

|∇u|w−∇u=0

almosteverywhere.Thisispreciselythesecondequationin(3.2).

Withthisformulation,problem(2.4)canbewrittenas(4.3)

minsupΦ(u,w),

u

󰀉w󰀉∞≤1

1970where

TONYF.CHAN,GENEH.GOLUB,ANDPEPMULET

Φ(u,w)=

󰀁󰀄

1

−αu∇·w+(Ku−z)2

2

󰀆

dxdy.

Byusingargumentsofdualitytheoryforconvexprogramming(see[11],forin-stance),wehavethatasolution(u∗,w∗)of(4.3)isasaddlepointforΦ(u,w),thatis,(4.4)

minsupΦ(u,w)=Φ(u∗,w∗)=

u

󰀉w󰀉∞≤1

supminΦ(u,w),

󰀉w󰀉∞≤1

u

and,moreover,w∗isasolutionofthedualproblem(4.5)where(4.6)

Ψ(w)=minΦ(u,w).

u

supΨ(w),

󰀉w󰀉∞≤1

SinceΦisquadraticinu,wecaneasilyderivethatthisminimummustsatisfythefollowingequation:(4.7)

−α∇·w+K∗(Ku−z)=0,

whereK∗denotestheadjointoperatorofK.Thisispreciselythefirstequationin(3.2).

5.Numericalresults.DenotebyCandCstandardfinitedifferencediscretiza-tionsofthelinearoperators

󰀄󰀆󰀆󰀄

∇u∇uT1

I−∇+K∗K,(5.1)−α∇·2|∇u||∇u|󰀄󰀆󰀆󰀄

w∇uT1

(5.2)I−∇+K∗K−α∇·

|∇u||∇u|thatappearin(3.3)and(3.5),respectively.Duetothesizeofthesematricesweuse

iterativemethodstosolvethediscretizationof(3.3)and(3.5).

ThematrixCissymmetricandpositivedefinitewhenthenaturalassumptionsα>0andKbeinginvertiblehold(wewillassumesohenceforth),thustheconjugategradientcanbeappliedtosolvethediscretizationof(3.3).Itcanbeshownthat

˜=1(C+CT)ispositivethematrixCispositivedefinite(i.e.,itssymmetrizationC2definite)ifα>0,Kisinvertible,and|wi|≤1atallgridpoints(see[8]).However,itisgenerallynonsymmetric,thustheconjugategradientmethodcannotbeapplied

˜,i.e.,useanapproximatetoit.OurapproachistoreplaceCbyitssymmetrizationC

˜canberegardedasadiscretizationofNewton’smethod.ThesymmetrizedmatrixC

theoperator:

󰀄󰀆󰀆󰀄

1w∇uT+∇uwT1

I−∇+K∗K.−α∇·

|∇u|2|∇u|FromthetheoryoftheconvergenceoftheapproximateNewton’smethod,it

˜convergesfollowsthattheconvergenceoftheresultingiterationisquadratic,sinceC

∇u

locallytoC(sincew→|∇u|),atleastlinearly;see[15,Section5.4.1].

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

1971

u=z,βsucc=βcurr=||∇z||2∞,ρ<1whileβcurr>βtarget

[unew,success]=newton(u,z,βcurr)ifsuccess,thenβsucc=βcurr

βcurr=βcurr∗ρ%decreaseβcurr

ρold=ρ,chooseρ∈(0,ρold)%decreaseρu=unewelse

βcurr=βsucc%increaseβcurr

ρold=ρ,chooseρ∈(ρold,1)%increaseρendend

Fig.5.1.Pseudocodeforcontinuationalgorithm.βcurristheparameterβfortheproblemtobesolvedatthecurrentiteration,βsuccistheβusedinthelastsuccessfulsolutionofaNewton’smethod,ρisthereductionfactorforβcurr.Theinitialchoiceofβcurr=||∇z||2∞isbasedupontheheuristicthatthedomainofconvergenceoftheNewton’smethodforalargeβ(relativetotheterm|∇z|2appearingintheformulationoftheTV-norm)shouldbelarge.

˜canbeensuredifweimposetheAsmentionedabove,thenonsingularityofC

condition|wi|≤1∀ithroughouttheprocess.Thiscanbeachievedinexpensivelybychoosingasteplengths>0suchthat(5.3)

s=ρsup{α:|wi+αδwi|<1∀i},

ρ∈(0,1),

whereitisassumedthat|wi|<1∀i.Actually,ourexperiencerevealsthatthischoiceofsteplengthforwalreadyproducesagloballyconvergentalgorithm,evenforsmallβandwithouttheuseofalinesearchforthevariableu.However,toensureglobalconvergenceif(5.3)werenotused,asteplengthprocedureontheprimal

˜issymmetricpositivedefinite,δu=−(C˜)−1g(u)isvariablesumustbeused.SinceC

adescentdirectionforψ,theobjectivefunctionof(2.8).Webrieflyshownextthatthisdirectionisgradientrelated.Thecosineoftheangleθbetweeng=∇ψandδu

δuTg|

iscosθ=󰀉|δu󰀉󰀉g󰀉,where󰀒·󰀒denotestheEuclideannorm.Byusingthesymmetry˜andstandardlinearalgebraproperties,wededuceofC(5.4)(5.5)(5.6)

˜−1)󰀒g󰀒2˜)˜−1g|λmin(Cλmin(C|gTC|δuTg|

,≥==cosθ=

˜−1g󰀒󰀒g󰀒˜−1)󰀒g󰀒2˜)󰀒δu󰀒󰀒g󰀒󰀒Cλmax(Cλmax(C

˜)=minvTCv,˜λmin(C

󰀉v󰀉=1

˜)=maxvTCv.˜λmax(C

󰀉v󰀉=1

˜thatItfollowseasilyfromtheNeumannboundaryconditionsandthedefinitionofC

˜)=λmin(K∗K)>0,bytheassumptionofthenonsingularityofK.Ontheλmin(C

otherhand,itcanbeshownthatthereexistsaconstantM>0,whichdependsonthegridsizeusedinthediscretization,suchthat

󰀄󰀆M˜≤√+λmax(K∗K)󰀒v󰀒2,vTCv

β1972

TONYF.CHAN,GENEH.GOLUB,ANDPEPMULET

[u,success]=newton(u,z,β)success=0w=0

fori=1:#iterations

computeupdatedirection(δu,δw)iflinesearchonurequested,thencomputespfrom(5.8)else

sp=1end

iflinesearchonwrequested,thencomputesdfrom(5.3)else

sd=1end

u=u+spδuw=w+sdδw

ifstoppingcriterionissatisfied,thensuccess=1returnendend

Fig.5.2.Pseudocodeforprimal-dualNewtonalgorithmwithpossiblelinesearches.TheprimalNewtonalgorithmisbasicallyidentical,withtheexceptionthatthedualvariableswanddualupdatesδwdonotappear.Thevariableslinesearchonurequestedandlinesearchonwrequestedareglobalvariablessuppliedbytheusertousethecorrespondinglinesearches.

M˜)≤√+λmax(K∗K);therefore,from(5.4)so(5.6)impliesthatλmax(C

β

(5.7)cosθ≥

λmin(K∗K)

>0∀u,M√+λmax(K∗K)

β

thusδuisagradientrelateddescentdirection.Hence,alinesearchbasedona

sufficientdescentofψcouldbeusedtoensureglobalconvergence.Thelinesearchprocedurethatwehaveusedconsistsofabacktrackingalgorithmthatselectsassteplengththefirstnumbersinthesequenceofpowersof2ofdecreasingexponent11

,4,...thatsatisfiestheinequality1,2(5.8)

ψ(u+sδu)≤ψ(u)+ηs∇ψ(u)Tδu,

η∈(0,1).

Inadditiontothelinesearchprocedure,wemayalsouseacontinuationprocedureontheparameterβtoimprovetheglobalconvergencebehaviorofthealgorithm.Thisprocedureconsistsofselectingasufficientlylargevalueofβandgraduallyreducingittothedesiredvalueβtarget.ThepseudocodesforthecontinuationandtheNewton’salgorithmsaregiveninFigures5.1and5.2,respectively.

OurfirstexperimentconsistsofthecomparisonoftheprimalNewtonandtheprimal-dualNewtonmethodsunderthefollowingcircumstances:

1.Continuationonβandnolinesearch.

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

1973

2.Continuationonβandlinesearchonu.

3.Nocontinuationonβanduselinesearchonu.

4.Nocontinuationanduselinesearchonuandwfortheprimal-dualmethod.Fig.5.3.(Left)Originalimage,256×256pixels.(Right)Noisyimage,SNR≈1,||g||=2.07.

Theoriginalimage,whichis256×256pixelsandhasdynamicrange[0,255],appearsinFigure5.3(a).AGaussianwhitenoisewithvarianceσ2≈1200isaddedtoit,resultingintheimagedisplayedinFigure5.3(b)withSNR=(||u−u||L2/σ)≈1.Figure5.4depictsthesolutionobtainedbytheprimal-dualNewtonmethod.

WehavesettheparameterαintheTikhonovformulationtotheinverseoftheLagrangemultiplieryieldedbyapreviousrunoftheconstrainedproblemsolver,inthiscaseα=1.18.Theparameterβhasbeensetto0.01.Furthermore,wehaveusedtruncatedversionsofNewton’salgorithmbasedontheconjugategradientmethodwithincompleteCholeskyaspreconditioner.Thestoppingcriterionforthe(outer)Newton’siterationisarelativedecreaseofthenonlinearresidualbyafactorof10−4.Thestoppingcriterionforthenthinnerlineariterationisarelativedecreaseofthelinearresidualbyafactorofηn,wherewefollowthesuggestionof[15,Eq.6.18]andset

󰀉

0.1ifn=0,

ηn=(5.9)

min(0.1,0.9||gn||2/||gn−1||2),wheregndenotesthegradientoftheobjectivefunction,i.e.,theright-handsideofthediscretizationof(3.5)or(3.3),atthenthiteration.InTable5.1wecomparetheprimal-dualandtheprimalversionsofNewton’smethodfortheexperimentsdescribedbelow.

Table5.1

Comparisonofprimalandprimal-dualNewtonmethods.

Primal-dualNewtonNWT

Continuation,nolinesearchContinuation,linesearchonuContinuation,linesearchonu&wNocontinuation,linesearchonu&w

25251312

CG1861875158

PrimalNewtonNWT705353

CG265210210

Notconverged

Theconclusionsthatcanbedrawnfromthisexperimentareasfollows:

1974

TONYF.CHAN,GENEH.GOLUB,ANDPEPMULET

Fig.5.4.Denoisedimage,12Newton’siterations,58CGiterations,||g||=5.57×10−5.

•Themostcrucialfactorfortheprimal-dualmethodiscontrollingthedualvariablesviathesteplengthalgorithmappearingin(5.3).Infact,ourexpe-rienceisthatthisalgorithmwiththedualsteplengthisgloballyconvergentfortheparametersαandβinareasonablerange.Alinesearchfortheprimalvariablesalmostalwaysyieldsunitsteplengths.

•Theprimal-dualmethodwiththedualsteplengthalgorithmdoesnotneedcontinuationtoconverge,althoughusingitmightbeslightlybeneficialintermsofwork.

•Theprimal-dualmethodwiththedualsteplengthhasamuchbetterconver-gencebehaviorthantheprimalmethod.

Inoursecondexperiment,wecomparetheprimal-dualNewton,fixedpoint,andtimemarchingmethods.Wehaveimplementedthefixedpoint(2.11)andthetimemarching(2.10)algorithmsusingthesamestandardfinitedifferenceschemeforthediscretizationofthedifferentialoperatorsasfortheprimal-dualmethod.Forthismethod,weusethesteplengthalgorithmforthedualvariables,nocontinuation,andthesameparametersasinthepreviousexperiment.Theseparametersarealsousedforthefixedpointmethod,exceptthatwehaveusedafixedlinearrelativeresidualdecreaseηn=0.1(itis,inthiscase,optimalaccordingtoourexperience).Forthetimemarchingmethodwehaveusedalinesearchbasedonsufficientdecreaseoftheobjectivefunction,inotherwords,anadaptivechoicefortheincrement∆ttomaintaintheiterationstable.Thestoppingcriterionforthetimemarchingmethodisbasedontheiterationcountsincewehavenotbeenabletoachievetheprescribedaccuracyinareasonableamountoftime.InFigures5.5,5.6,and5.7weplottheconvergencehistoryofthisexperiment.

Theconclusionswedrawfromthisexperimentarethefollowing:

•Theprimal-dualalgorithmisquadraticallyconvergent,whereastheothersareatbestlinearlyconvergent.

•Theprimal-dualalgorithmbehavessimilarlytothefixedpointmethodintheearlystages,butinafewiterationscanattainhighaccuracy.

•Thecostperiterationoftheprimal-dualmethodisbetween30and50percentmorethanforthefixedpointiteration.Thememoryrequirementsroughlysatisfythisaswell.

Inthelastexperimentwehavechosenthefollowingparametersfortheprimal-dualmethod:samedegradedimageasinthepreviousexperiments,α=1,β=0.01(nocontinuation);10−8asouteriterationrelativetolerance;10−4asCGrelativetolerance.

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

11975

10100Primal−dual Fixed Point Time marching10−1||gradient||10−210−310−410−501020304050Iterations60708090100Fig.5.5.PlotoftheL2-normofthegradientg(u)oftheobjectivefunctionversusiterationsforthedifferentmethods.

103102Primal−dual Fixed Point Time marchingDifference true image10110010−110−210−301020304050Iterations60708090100Fig.5.6.PlotoftheL2-normofthedifferencebetweenthecurrentiterateandthesolutionfortheproblemcomputedbyNewton’smethodwithhighaccuracyversusiterationsforthedifferentmethods.

Wehavethengenerated50randominitialapproximationszi,i=1,...,50,andobtainedfromtheprimal-dualalgorithmwithinitialguesszianumberofiteratesui0=zi,...,uini.Inalltheseapplicationsofthealgorithmwehaveobtainedconvergenceandthenumberniofiterationshasrangedfrom14to17.Althoughwedonothaveaprooffortheglobalconvergenceofthisalgorithm,theseresultsstrengthenourconjectureoftheglobalconvergenceoftheprimal-dualmethod.

1976

TONYF.CHAN,GENEH.GOLUB,ANDPEPMULET

10010−1% pixels10−2Primal−dual Fixed Point Time marching10−310−401020304050Iterations60708090100Fig.5.7.Plotof#pixelswhichdiffermorethan.001(relatively)fromthesolutionfortheproblemcomputedbyNewton’smethodwithhighaccuracyversusiterationsforthedifferentmethods.

Acknowledgments.WewouldliketothankAndyConnandMichaelOvertonformakingtheirpreprint[9]availabletousandJunZouformanyhelpfulconver-sationswiththefirstauthoronmixedfiniteelements.ThethirdauthorwantstoheartilythankPacoAr´andiga,VicenteCandela,RosaDonat,andAntonioMarquinafortheircontinuoussupport.

REFERENCES

[1]R.AcarandC.R.Vogel,Analysisoftotalvariationpenaltymethodsforill-posedproblems,

InverseProblems,10(1994),pp.1217–1229.

[2]L.Alvarez,P.-L.Lions,andJ.-M.Morel,Imageselectivesmoothingandedgedetectionby

nonlineardiffusionII,SIAMJ.Numer.Anal.,29(1992),pp.845–866.

[3]K.D.Andersen,MinimizingaSumofNorms(LargeScaleSolutionofSymmetricPositive

DefiniteLinearSystems),Ph.D.thesis,OdenseUniversity,Odense,Denmark,1995.

[4]F.Brezzi,Asurveyofmixedfiniteelementmethods,inFiniteElements,ICASE/NASALaRC

Ser.,Springer-Verlag,Berlin,1988,pp.34–49.

[5]P.H.CalamaiandA.R.Conn,Astablealgorithmforsolvingthemultifacilitylocation

probleminvolvingEuclideandistances,SIAMJ.Sci.Statist.Comput.,1(1980),pp.512–526.

[6]P.H.CalamaiandA.R.Conn,Asecond-ordermethodforsolvingthecontinuousmultifacility

locationproblem,inNumericalAnalysis:ProceedingsoftheNinthBiennialConference,Dundee,Scotland,G.A.Watson,ed.,LectureNotesinMath.912,Springer-Verlag,Berlin,1982,pp.1–25.

[7]R.H.Chan,T.F.Chan,andH.M.Zhou,AdvancedSignalProcessingAlgorithms,inPro-ceedingsoftheInternationalSocietyofPhoto-OpticalInstrumentationEngineers,F.T.Luk,ed.,SPIE,1995,pp.314–325.

[8]T.Chan,G.Golub,andP.Mulet,ANonlinearPrimal-DualMethodforTotalVariation-BasedImageRestoration,TechnicalReport95-43,UniversityofCalifornia,LosAngeles,CA,1995.

[9]A.R.ConnandM.L.Overton,APrimal-DualInteriorPointMethodforMinimizinga

SumofEuclideanNorms,preprint,1994.

[10]D.DobsonandF.Santosa,RecoveryofBlockyImagesfromNoisyandBlurredData,Tech-nicalReport94-7,CenterfortheMathematicsofWaves,UniversityofDelaware,Newark,

APRIMAL-DUALMETHODFORTVIMAGERESTORATION

1977

[11][12][13][14][15][16][17][18][19][20][21][22][23]

DE,1994.

I.EkelandandR.Temam,Analyseconvexeetprobl`emesvariationnels,Dunod,Paris,1974.E.Giusti,MinimalSurfacesandFunctionsofBoundedVariations,Birkh¨auser-Verlag,Basel,

Switzerland,1984.

G.GolubandC.vanLoan,MatrixComputations,2nded.,TheJohnsHopkinsUniversity

Press,Baltimore,MD,1989.

C.W.Groetsch,TheTheoryofTikhonovRegularizationforFredholmIntegralEquationsof

theFirstKind,Pitman,Boston,1984.

C.T.Kelley,IterativeMethodsforLinearandNonlinearEquations,FrontiersAppl.Math.

16,SIAM,Philadelphia,PA,1995.

Y.LiandF.Santosa,AnAffineScalingAlgorithmforMinimizingTotalVariationinImage

Enhancement,TechnicalReport12/94,CenterforTheoryandSimulationinScienceandEngineering,CornellUniversity,Ithaca,NY,1994.

M.E.Oman,Fastmultigridtechniquesintotalvariation-basedimagereconstruction,inPre-liminaryProceedingsofthe1995CopperMountainConferenceonMultigridMethods,toappear.

P.PeronaandJ.Malik,Scalespaceandedgedetectionusinganisotropicdiffusion,IEEE

Trans.PatternAnal.Mach.Intelligence,12(1990),pp.629–639.

L.Rudin,S.Osher,andE.Fatemi,Nonlineartotalvariationbasednoiseremovalalgorithms,

Phys.D,60(1992),pp.259–268.

G.SapiroandA.Tannenbaum,Areaandlengthpreservinggeometricinvariantscale-spaces,

inProceedingsThirdEuropeanConferenceonComputerVision,Stockholm,Sweden,Lec-tureNotesinComput.Sci.801,Springer,Berlin,1994,pp.449–458.

A.N.TikhonovandV.Y.Arsenin,SolutionsofIll-PosedProblems,JohnWiley,NewYork,

1977.

C.R.Vogel,Amultigridmethodfortotalvariation-basedimagedenoising,inComputation

andControlIV,Progr.SystemsControlTheory20,Birkh¨auser,Boston,MA,1995,pp.323–331.

C.R.VogelandM.E.Oman,Iterativemethodsfortotalvariationdenoising,SIAMJ.Sci.

Comput.,17(1996),pp.227–238.

因篇幅问题不能全部显示,请点此查看更多更全内容